PROXIMATE AND PHYTOCHEMICAL ANALYSIS OF AFRAMOMUM DANIELLI GROWN UNDER MATURE RUBBER PLANTATION: NUTRITIONAL AND THERAPEUTIC

Main Article Content

Eseosa Osazuwa
Oghenetega Sunday
Chioma Okwu-Abolo
Ikhazuagbe Hilary Ifijen
Omoigberale Jude

Abstract

This study evaluates the proximate and phytochemical composition of Aframomum danielli seeds cultivated under a mature rubber (Hevea brasiliensis) plantation in Edo State, Nigeria, highlighting its nutritional and therapeutic potential. Mature fruits were harvested, air-dried, and subjected to methanol extraction via Soxhlet apparatus. Proximate analysis revealed a nutrient-rich profile dominated by carbohydrates (55.67%), proteins (13.30%), fats (7.78%), fiber (3.64%), ash (5.77%), and moderate moisture content (13.84%), positioning A. danielli as a promising energy and nutrient source. Phytochemical profiling using GC-MS identified key bioactive compounds, including catechin (3.36 ppm), ellagic acid (2.37 ppm), luteolin (1.61 ppm), and quercetin (0.64 ppm), known for potent antioxidant, anti-inflammatory, neuroprotective, and anticancer activities. The presence of additional flavonoids, phenolic acids, stilbenes, and other bioactives underlines the plant’s broad pharmacological relevance. The unique agroecological conditions of the rubber plantation likely influence secondary metabolite biosynthesis, enhancing therapeutic compound diversity. Collectively, these findings scientifically substantiate the ethnomedicinal uses of A. danielli and support its development as a functional food, nutraceutical, and phytopharmaceutical resource. Further in vivo and clinical investigations are recommended to validate safety and efficacy.

Downloads

Download data is not yet available.

Article Details

Section

Articles

How to Cite

PROXIMATE AND PHYTOCHEMICAL ANALYSIS OF AFRAMOMUM DANIELLI GROWN UNDER MATURE RUBBER PLANTATION: NUTRITIONAL AND THERAPEUTIC. (2025). Journal of Chemistry and Allied Sciences, 1(1), 15-25. https://doi.org/10.60787/jcas.vol1no1.29

References

[1] Harris, D. J., & Wortley, A. H. (2018). Monograph of Aframomum (Zingiberaceae). Systematic Botany Monographs, 104, 1-204.

[2] Adefegha, S. A., & Oboh, G. (2012). Acetylcholinesterase (AChE) inhibitory activity, antioxidant properties and phenolic composition of two Aframomum

[3] Adegoke, G. O., Gbadamosi, R., Evwoerhurhoma, F., Uzo Peters, P. I., Falade, K., Itiola, O., Moody, O., & Skura, B. (2002). Protection of maize (Zea mays) and soybeans (Glycine max) using Aframomum danielli. European Food Research and Technology, 214(5), 408-411. https://doi.org/10.1007/s00217-001-0476-8

[4] Abioye, A. O., Adegoke, G. O., & Bolarinwa, I. F. (2014). Evaluation of the preservative effect of Aframomum danielli spice in oils. African Journal of Biotechnology, 13(2), 223-228.

[5] Adegoke, G., Evwiehurhoma, F. O., & Afolabi, M. O. (2016). Essential oils in food preservation, flavor, and safety. In Essential oils in food preservation, flavor and safety (pp. 163-171). Academic Press.

[6] Ifijen, I. H., Mamza, A. U., Fasina, K. A., Omoruyi, J. I., & Ikhuoria, E. U. (2019). Phytochemical analysis of Guiera senegalensis J.F. Gmel extract and its anti-plasmodial properties on Wister albino mice via oral route. International Journal of Pharmacology, Phytochemistry and Ethnomedicine, 13, 35-44. https://doi.org/10.18052/www.scipress.com/IJPPE.13.35

[7] Sarpong, A., & Abugre, S. (2020). The potential of domesticating grains of paradise (Aframomum melegueta), a non-timber forest product in off-reserve tree farms. Journal of Sustainable Forestry, 41(2), 159-172. https://doi.org/10.1080/10549811.2020.1845743

[8] Ifijen, I., & Nkwor, A. (2020). Selected under-exploited plant oils in Nigeria: A correlative study of their properties. Tanzania Journal of Science, 46(3), 817-827.

[9] Adegoke, G. O., Komolafe, G. O., & Falade, K. O. (2014). Effect of Aframomum melegueta and Aframomum zambesiacum on the shelf life of stored food products. Journal of Food Science, 79(5), 742-748. https://doi.org/10.1111/1750-3841.12483

[10] Maliki, M., & Ifijen, I. H. (2020). Extraction and characterization of rubber seed oil. International Journal of Scientific Engineering and Science, 4(6), 24-27. http://ijses.com/

[11] Olunkwa, U. E., Iheanacho, K. M. E., Igwe, C. U., Nwaogu, L. A., & Iheanacho, J. N. (2023). Bioactive component analysis of aqueous seed extract of Aframomum melegueta. GSC Biological and Pharmaceutical Sciences, 25(2), 249-272. https://doi.org/10.30574/gscbps.2023.25.2.0458

[12] Harborne, J. B. (1998). Phytochemical methods: A guide to modern techniques of plant analysis (3rd ed.). Springer. https://doi.org/10.1007/978-94-009-5570-7

[13] Dilebo, T., Feyissa, T., Asfaw, Z., & Zewdu, A. (2023). Analysis of proximate composition, mineral contents, and anti-nutritional factors of enset (Ensete ventricosum) landraces commonly used for amicho preparation in Hadiya Zone, Southern Ethiopia: Implications for food security and mineral bioavailability. Journal of Agriculture and Food Research, 14, 100771.

[14] BeMiller, J. N. (2010). Carbohydrate analysis. In Food analysis (pp. 147-177). Springer.

[15] Maliki, M., Ikhuoria, E. U., & Ifijen, I. H. (2020). Extraction and physiochemical characterization of oils obtained from selected under-utilized oil-bearing seeds in Nigeria. ChemSearch Journal, 11(1), 110-117. http://www.ajol.info/index.php/csj

[16] Akuru, U. B., & Amadi, B. A. (2018). Phytochemicals and antioxidant properties of some selected medicinal plants. Journal of Pharmacognosy and Phytochemistry, 7(5), 283-285.

[17] Calderón-Montano, J. M., Burgos-Morón, E., Pérez-Guerrero, C., & López-Lázaro, M. (2011). A review on the dietary flavonoid kaempferol. *Mini-Reviews in Medicinal Chemistry, 11*(4), 298-344. https://doi.org/10.2174/138955711795305335

[18] Boots, A. W., Haenen, G. R., & Bast, A. (2008). Health effects of quercetin: From antioxidant to nutraceutical. European Journal of Pharmacology, 585(2-3), 325-337. https://doi.org/10.1016/j.ejphar.2008.03.008

[19] Kwon, Y. (2017). Luteolin as a potential preventive and therapeutic candidate for Alzheimer's disease. Experimental Gerontology, 95, 39-43. https://doi.org/10.1016/j.exger.2017.05.014

[20] Baur, J. A., & Sinclair, D. A. (2006). Therapeutic potential of resveratrol: The in vivo evidence. Nature Reviews Drug Discovery, 5(6), 493-506. https://doi.org/10.1038/nrd2060

[21] Chauhan, A., Yadav, M., Chauhan, R., Basniwal, R. K., Pathak, V. M., Ranjan, A., & Hussain, A. (2024). Exploring the potential of ellagic acid in gastrointestinal cancer prevention: Recent advances and future directions. Oncology and Therapy, 12(4), 685-699. https://doi.org/10.1007/s40487-024-00296-1

[22] Belhouala, K., Korkmaz, C., Küçükaydın, M., Küçükaydın, S., Duru, M., & Benarba, B. (2024). Eco-Friendly Species Evernia prunastri (L.) Ach.: Phenolic Profile, Antioxidant, Anti-inflammatory, and Anticancer Properties. ACS Omega, 9, 45719-45732. https://doi.org/10.1021/acsomega.3c10407

[23] Ifijen, I. H., Odiachi, I. J., Maliki, M., & others. (2020). Investigation of the anti-malaria potency and chemical constituents of the bark extracts of Ficus elastica in Plasmodium berghei infected mice. Chemistry Africa, 3(4), 1045-1051. https://doi.org/10.1007/s42250-020-00163-2

[24] Amrati, F., Mssillou, I., Boukhira, S., Bichara, M., Abdali, Y., De Azevedo, R., Mohamed, C., Slighoua, M., Conte, R., Kiokias, S., Pontes, G., & Bousta, D. (2024). Phenolic Composition of Crataegus monogyna Jacq. Extract and Its Anti-Inflammatory, Hepatoprotective, and Antileukemia Effects. Pharmaceuticals, 17(6), 786. https://doi.org/10.3390/ph17060786

[25] Carrillo-Martinez, E., Flores-Hernández, F., Salazar-Montes, A., Nario-Chaidez, H., & Hernández-Ortega, L. (2024). Quercetin, a Flavonoid with Great Pharmacological Capacity. Molecules, 29(5), 1000. https://doi.org/10.3390/molecules29051000

[26] Dedov, D., & Usoltseva, O. (2023). Flavonoids quercetin, dihydroquercetin (taxifolin): antioxidant and anti-ischemic effects, possibility of application in cardiology. Cardiology, 34(6), 7-14. https://doi.org/10.29296/25877305-2023-06-07

[27] Kania-Dobrowolska, M., & Baraniak, J. (2022). Dandelion (Taraxacum officinale L.) as a Source of Biologically Active Compounds Supporting the Therapy of Co-Existing Diseases in Metabolic Syndrome. Foods, 11(18), 2858. https://doi.org/10.3390/foods11182858

[28] Nabavi, S., Braidy, N., Gortzi, O., Sobarzo-Sánchez, E., Daglia, M., Skalicka-Woźniak, K., & Nabavi, S. (2015). Luteolin as an anti-inflammatory and neuroprotective agent: A brief review. Brain Research Bulletin, 119, 1-11. https://doi.org/10.1016/j.brainresbull.2015.09.002

[29] Rehfeldt, S., Silva, J., Alves, C., Pintéus, S., Pedrosa, R., Laufer, S., & Goettert, M. (2022). Neuroprotective Effect of Luteolin-7-O-Glucoside against 6-OHDA-Induced Damage in Undifferentiated and RA-Differentiated SH-SY5Y Cells. International Journal of Molecular Sciences, 23(6), 2914. https://doi.org/10.3390/ijms23062914

[30] Khan, A., Jahan, S., Imtiyaz, Z., Alshahrani, S., Makeen, H., Alshehri, B., Arafah, A., & Rehman, M. (2020). Neuroprotection: Targeting Multiple Pathways by Naturally Occurring Phytochemicals. Biomedicines, 8(8), 284. https://doi.org/10.3390/biomedicines8080284

[31] Cannataro, R., Fazio, A., La Torre, C., Caroleo, M., & Cione, E. (2021). Polyphenols in the Mediterranean Diet: From Dietary Sources to microRNA Modulation. Antioxidants, 10(3), 328. https://doi.org/10.3390/antiox10030328

[32] Alajmi, M., Rehman, M., Hussain, A., & Rather, G. (2018). Pharmacoinformatics approach for the identification of Polo-like kinase-1 inhibitors from natural sources as anti-cancer agents. International Journal of Biological Macromolecules, 116, 173-181. https://doi.org/10.1016/j.ijbiomac.2018.05.023

[33] Shahbaz, M., Alsagaby, S., Naeem, H., Abdulmonem, A., Hussain, M., Abdelgawad, M., El-Ghorab, A., Ghoneim, M., El-Sherbiny, M., Atoki, A., & Awuchi, C. (2023). Anticancer, antioxidant, ameliorative and therapeutic properties of kaempferol. International Journal of Food Properties, 26(1), 1140-1166. https://doi.org/10.1080/10942912.2023.2205040

[34] Hussain, M., Altamimi, A., Afzal, M., Almalki, W., Kazmi, I., Alzarea, S., Gupta, G., Shahwan, M., Kukreti, N., Wong, L., Kumarasamy, V., & Subramaniyan, V. (2024). Kaempferol: Paving the path for advanced treatments in aging-related diseases. Experimental Gerontology, 188, 112389. https://doi.org/10.1016/j.exger.2024.112389

[35] Speisky, H., Arias-Santé, M., & Fuentes, J. (2023). Oxidation of Quercetin and Kaempferol Markedly Amplifies Their Antioxidant, Cytoprotective, and Anti-Inflammatory Properties. Antioxidants, 12(1), 155. https://doi.org/10.3390/antiox12010155

[36] Pannu, N., & Bhatnagar, A. (2019). Resveratrol: from enhanced biosynthesis and bioavailability to multitargeting chronic diseases. Biomedicine & Pharmacotherapy, 109, 2237-2251. https://doi.org/10.1016/j.biopha.2018.11.075

Most read articles by the same author(s)

Similar Articles

You may also start an advanced similarity search for this article.