ADVANCES IN 3D PRINTING OF POLY(Ε-CAPROLACTONE) (PCL)-BASED SCAFFOLDS FOR BONE TISSUE ENGINEERING: A MINI REVIEW
Main Article Content
Abstract
Poly(ε-caprolactone) (PCL) is a widely used, FDA-accepted, slow-degrading polyester well suited to 3D printing via extrusion methods for bone tissue engineering. Recent years have seen rapid development of PCL-based printed scaffolds combined with osteoinductive fillers (hydroxyapatite, β-TCP, doped-HA), surface modifications (polydopamine, collagen), and multifunctional additives (graphene/GO, magnetic or plasmonic particles) to improve osteogenesis, mechanical performance and biological activity. Low-temperature and solvent-assisted workflows, hybrid printing with hydrogels, and post-print functionalization have expanded the design space and preserved bioactivity. Although promising preclinical outcomes are reported, key barriers remain matching mechanical properties to host bone, controlling degradation while enabling timely bone in-growth, achieving reliable vascularization, and navigating regulatory/scale-up challenges. Targeted strategies now focus on hierarchical porosity, composite formulations (PCL/HA, PCL/β-TCP, PCL/GO), and clinically relevant case reports that point toward near-term translational opportunities.
Downloads
Article Details
Section

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
References
[1] Mokobia, K. E., Ifijen, I. H., & Ikhuoria, E. U. (2023). ZnO-NPs-coated implants with osteogenic properties for enhanced osseointegration. In TMS 2023 152nd Annual Meeting & Exhibition Supplemental Proceedings (pp. 234–242). Springer, Cham. https://doi.org/10.1007/978-3-031-22524-6_27.
[2] Ighodaro, A., Osarobo, J. A., Onuguh, I. C., Ogbeide, O. K., et al. (2024). Challenges and future perspectives of biomimetic materials for bi.omedical applications: Bridging the gap between nature and medicine. In TMS 2024 153rd Annual Meeting & Exhibition Supplemental Proceedings (pp. 743–754). Springer, Cham. https://doi.org/10.1007/978-3-031-50349-8_76.
[3] Jonathan, E. M., Oghama, O. E. Et al. (2024). Biodegradable polymers for 3D printing of tissue engineering scaffolds: Challenges and future directions. In TMS 2024 153rd Annual Meeting & Exhibition Supplemental Proceedings (pp. 393–404). Springer, Cham. https://doi.org/10.1007/978-3-031-50349-8_40.
[4] Atoe, B., Ifijen, I. H., Okiemute, I. P., Emmanuel, O. I., & Maliki, M. (2024). Silk biomaterials in wound healing: Navigating challenges and charting the future of regenerative medicine. In TMS 2024 153rd Annual Meeting & Exhibition Supplemental Proceedings (pp. 811–822). Springer, Cham. https://doi.org/10.1007/978-3-031-50349-8_78.
[5] Jonathan, E. M., Ohifuemen, A. O., Jacob, J. N., Isaac, A. Y., & et al. (2023). Polymeric biodegradable biomaterials for tissue bioengineering and bone rejuvenation. In TMS 2023 152nd Annual Meeting & Exhibition Supplemental Proceedings (pp. 287–296). Springer, Cham. https://doi.org/10.1007/978-3-031-22524-6_25.
[6] Akobundu, U. U., Ifijen, I. H., Duru, P., Igboanugo, J. C., Ekanem, I., Fagbolade, M., Ajayi, A. S., George, M., Atoe, B., & Matthews, J. T. (2025). Exploring the role of strontium-based nanoparticles in modulating bone regeneration and antimicrobial resistance: A public health perspective. RSC Advances, 15(15), 10902–10957. https://doi.org/10.1039/D5RA00308C.
[7] Yazdanpanah, Z., Sharma, N. K., Raquin, A., Cooper, D. M. L., Chen, X., & Johnston, J. D. (2023). Printing tissue-engineered scaffolds made of polycaprolactone and nano-hydroxyapatite with mechanical properties appropriate for trabecular bone substitutes. BioMedical Engineering OnLine, 22, Article 73. https://doi.org/10.1186/s12938-023-01135-6.
[8] Furtado, A. S. A., Cunha, M. H. S., Sousa, L. M. R., Brito, G. C., Verde, T. F. C. L., Filgueiras, L. A., Sobral-Silva, L. A., Santana, M. V., Sousa, G. F., Santos, F. E. P., Mendes, A. N., Figueredo-Silva, J., Maia Filho, A. L. M., Marciano, F. R., Vasconcellos, L. M. R., & Lobo, A. O. (2025). 3D-printed PCL-based scaffolds with high nanosized synthetic smectic clay content: Fabrication, mechanical properties, and biological evaluation for bone tissue engineering. International Journal of Nanomedicine, 20, 53–69. https://doi.org/10.2147/IJN.S497539.
[9] Özdemir, E., Familiari, F., Yilgor Huri, P., Firat, A., & Huri, G. (2023). Use of 3D-printed polycaprolactone + hyaluronic acid-based scaffold in orthopedic practice: Report of two cases. Journal of 3D Printing in Medicine, 7(1), Article 3DP001. https://doi.org/10.2217/3dp-2022-0020.
[10] Mirzavandi, Z., Poursamar, S. A., Amiri, F., Bigham, A., & Rafienia, M. (2024). 3D printed polycaprolactone/gelatin/ordered mesoporous calcium magnesium silicate nanocomposite scaffold for bone tissue regeneration. Journal of Materials Science: Materials in Medicine, 35(1), 58. https://doi.org/10.1007/s10856-024-06828-5.
[11] Wang, F. Z., Liu, S., Gao, M., Yu, Y., Zhang, W. B., Li, H., & Peng, X. (2025). 3D-printed polycaprolactone/hydroxyapatite bionic scaffold for bone regeneration. Polymers, 17(7), 858. https://doi.org/10.3390/polym17070858.
[12] Yang, Y., He, H., Miao, F., Zhang, Y., Wang, L., & Li, Z. (2024). 3D-printed PCL framework assembling ECM-inspired multi-layer mineralized GO-Col-HAp microscaffold for in situ mandibular bone regeneration. Journal of Translational Medicine, 22, 224. https://doi.org/10.1186/s12967-024-05020-1.
[13] Özdemir, E., Familiari, F., Huri, P. Y., Firat, A., & Huri, G. (2023). Use of 3D-printed polycaprolactone + hyaluronic acid-based scaffold in orthopedic practice: Report of two cases. Journal of 3D Printing in Medicine, 7(1). https://doi.org/10.2217/3dp-2022-0020.
[14] Ebrahimi, Z., Irani, S., Ardeshirylajimi, A., & et al. (2022). Enhanced osteogenic differentiation of stem cells by 3D printed PCL scaffolds coated with collagen and hydroxyapatite. Scientific Reports, 12, 12359. https://doi.org/10.1038/s41598-022-15602-y.
[15] Petousis, M., Michailidis, N., Korlos, A., Papadakis, V., David, C., Sagris, D., Mountakis, N., Argyros, A., Valsamos, J., & Vidakis, N. (2024). Biomedical composites of polycaprolactone/hydroxyapatite for bioplotting: Comprehensive interpretation of the reinforcement course. Polymers, 16(17), 2400. https://doi.org/10.3390/polym16172400.
[16] Amini-Mosleh-Abadi, S., Yazdanpanah, Z., Ketabat, F., et al. (2025). In vitro characterization of 3D printed polycaprolactone/graphene oxide scaffolds impregnated with alginate and gelatin hydrogels for bone tissue engineering. Journal of Biomaterials Applications, 40(3), 374–388. https://doi.org/10.1177/08853282251336552.
[17] Zhong, Q., Huang, S., Huang, W., Wu, H., Wang, Y., Wen, Z., Yin, H., Wang, Y.-X., Xu, W., & Wa, Q. (2025). Polydopamine-modified 3D-printed polycaprolactone scaffolds for promoting bone regeneration. International Journal of Bioprinting, 11(1), 418–438. https://doi.org/10.36922/ijb.4995.
[18] Gharibshahian, M., Salehi, M., Beheshtizadeh, N., Kamalabadi-Farahani, M., Atashi, A., Nourbakhsh, M.-S., & Alizadeh, M. (2023). Recent advances on 3D-printed PCL-based composite scaffolds for bone tissue engineering. Frontiers in Bioengineering and Biotechnology, 11, 1168504. https://doi.org/10.3389/fbioe.2023.1168504.