SPATIO-SEASONAL VARIABILITY AND SOURCE INFERENCE OF PM₂.₅ IN ABUJA, NIGERIA: IMPLICATIONS FOR URBAN AIR QUALITY POLICY
Main Article Content
Abstract
Particulate matter (PM₂.₅) poses a critical global public health risk. Urban centers in developing countries, like Abuja, Nigeria, frequently experience air quality levels that exceed international guidelines, yet data remains sparse. This study conducted a spatio-temporal assessment of PM₂.₅ concentrations across three distinct urban locales in Abuja—Karu Abattoir (KD), Nyanya Park (NY), and Asokoro (AS) to capture variability from anthropogenic and traffic influences. 24-hour samples were collected using a [Insert Sampler Model, e.g., BGI PQ100 low-volume gravimetric sampler] during the distinct dry and rainy seasons. PM₂.₅ mass was determined gravimetrically. Concurrent meteorological data were analyzed using Pearson correlation to identify key drivers of pollution dispersion and accumulation. PM₂.₅ concentrations exhibited significant seasonal and spatial heterogeneity. Dry season levels (50.34 – 87.07 µg/m³) consistently surpassed WHO (15 µg/m³), US EPA (35 µg/m³), and EU (25 µg/m³) standards by a factor of 3.3-5.8, with Nyanya Park, a high-traffic zone, recording the highest burden. Air Quality Index (AQI) categorizations ranged from "Unhealthy for Sensitive Groups" to "Unhealthy." Meteorological analysis revealed that low wind speed and high atmospheric pressure during the dry season facilitated severe pollutant accumulation. While wet season precipitation provided some scavenging, it was insufficient to reduce concentrations to safe levels. Abuja experiences a severe and seasonally exacerbated PM₂.₅ pollution problem, positioning it among the most polluted urban centers globally. The findings underscore an urgent public health priority and necessitate immediate, targeted policy interventions, including enhanced continuous monitoring, traffic management, and public awareness campaigns.
Downloads
Article Details
Section

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
References
[1] Abulude, F. O., Oluwagbayide, S. D., Akinnusotu, A., Arifalo, K. M., Adamu, A., & Kenni, A. M. (2024). A comprehensive analysis of risk assessment of particulate matter in five health centers in Akure, Nigeria. Pollutants, 4(1), 72–90. https://doi.org/10.3390/pollutants4010006
[2] Abulude, F. O., Oluwagbayide, S. D., Akinnusotu, A., Elemide, O. A., Gbotoso, A. O., Ademilua, S. O., & Abulude, I. A. (2023). Indoor air quality in a tertiary institution: The case of Federal College of Agriculture, Akure, Nigeria. Aerosol Science and Engineering, 7, 1–12. https://doi.org/10.1007/s41810-023-00187-2
[3] Abulude, F. O., Oyetunde, J. G., & Feyisetan, A. O. (2024). Air pollution in Nigeria: A review of causes, effects, and mitigation strategies. Continental Journal of Applied Science, 19(1), 1–23. https://doi.org/10.5281/zenodo.10633771
[4] Allen, J. G., & Ibrahim, A. M. (2019). Indoor environmental quality and occupant satisfaction in green-certified buildings. Building and Environment, 149, 362–370. https://doi.org/10.1016/j.buildenv.2018.12.025
[5] Amin, M. A., Almalawi, D. R., Ali, S. S. M., Badawi, A., Mersal, G. A. M., Boman, J., & Shaltout, A. A. (2022). Elemental variability of PM2.5 aerosols in historical and modern areas of Jeddah, Saudi Arabia. Atmosphere, 13(12), 2043. https://doi.org/10.3390/atmos13122043
[6] Anake, W. U., Benson, N. U., Imokhai, T., Emenike, P. C., Ana, G. R. E. E., & Zhang, S. (2020). Chemical speciation and health risks of airborne heavy metals around an industrial community in Nigeria. Human and Ecological Risk Assessment: An International Journal, 26(1), 242–254. https://doi.org/10.1080/10807039.2018.1504672
[7] Ayu-Oktaviana, A., Assomadi, A. F., & Hermana, J. (2025). Analysis correlation of meteorological factors with PM2.5 concentrations in forecasting air quality of the city of Jakarta. IOP Conference Series: Earth and Environmental Science, 1448(1), 012006. https://doi.org/10.1088/1755-1315/1448/1/012006
[8] Basemera, S., Onyango, S., Tumwesigyire, J., Mukama, M., Santorino, D., North, C. M., & Parks, B. (2025). Impact of meteorological factors on seasonal and diurnal variation of PM2.5 at a site in Mbarara, Uganda. Air, 3(1), 1. https://doi.org/10.3390/air3010001
[9] Bodor, K., Szép, R., & Bodor, Z. (2022). The human health risk assessment of particulate air pollution (PM2.5 and PM10) in Romania. Toxicology Reports, 9, 556–562. https://doi.org/10.1016/j.toxrep.2022.02.021
[10] Brasseur, G. P., & Kumar, R. (2021). Chemical weather and chemical climate. AGU Advances, 2(2), e2021AV000399. https://doi.org/10.1029/2021AV000399
[11] Cohen, A. J., Brauer, M., Burnett, R., Anderson, H. R., Frostad, J., Estep, K., Balakrishnan, K., Brunekreef, B., Dandona, L., Dandona, R., ... & Forouzanfar, M. H. (2017). Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: An analysis of data from the Global Burden of Diseases Study 2015. The Lancet, 389(10082), 1907–1918. https://doi.org/10.1016/S0140-6736(17)30505-6
[12] Cordell, R. L., Panchal, R., Bernard, E., Gatari, M., Waiguru, E., Ng’ang’a, M., Nyang’aya, J., Ogot, M., Wilde, M. J., Wyche, K. P., Abayomi, A. A., Alani, R., Monks, P. S., & Vande Hey, J. D. (2021). Volatile organic compound composition of urban air in Nairobi, Kenya and Lagos, Nigeria. Atmosphere, 12(10), 1329. https://doi.org/10.3390/atmos12101329
[13] Debnath, J., Majumder, D., & Biswas, A. (2018). Air quality assessment using weighted interval type-2 fuzzy inference system. Ecological Informatics, 46, 133–146. https://doi.org/10.1016/j.ecoinf.2018.06.002
[14] El Gourch, B., Ihssane, B., Tahri, M., Zahry, F., Acil, G., Saffaj, T., & Benchrif, A. (2023). Seasonal variations and composition of soluble ions in PM2.5 at an urban location in Kenitra, Morocco. Environmental Sciences Proceedings, 27(1), 20. https://doi.org/10.3390/ecas2023-16341
[15] European Environment Agency (EEA). (2023). Air quality in Europe—2023 report. EEA. https://www.eea.europa.eu/publications/air-quality-in-europe-2023.
[16] Fan, H., Wang, Y., Zhao, C., Yang, Y., Yang, X., Sun, Y., & Jiang, S. (2021). The role of primary emission and transboundary transport in the air quality changes during and after the COVID‐19 lockdown in China. Geophysical Research Letters, 48(7), e2020GL091065. https://doi.org/10.1029/2020GL091065
[17] Huang, R. J., Zhang, Y., Bozzetti, C., Ho, K. F., Cao, J. J., Han, Y., & Prévôt, A. S. H. (2014). High secondary aerosol contribution to particulate pollution during haze events in China. Nature, 514(7521), 218–222. https://doi.org/10.1038/nature13774
[18] Kassamba-Diaby, M. L., Galy-Lacaux, C., Yoboué, V., Hickman, J. E., Jaars, K., Gnamien, S., Konan, R., Gardrat, E., & Silué, S. (2022). The chemical characteristics of rainwater and wet atmospheric deposition fluxes at two urban sites and one rural site in Côte d’Ivoire. EGUsphere [preprint]. https://doi.org/10.5194/egusphere-2022-994
[19] Lala, M. A., Adesina, O. A., Popoola, L. T., & Owolabi, J. O., Oyewale, B. O. (2019). Spatial distribution and toxicity potential of gaseous criteria air pollutants in the ambient air around a typical haulage truck stop. SN Applied Sciences, 1, 1002. https://doi.org/10.1007/s42452-019-0999-5
[20] Lala, M. A., Onwunzo, C. S., Adesina, O. A., & Sonibare, J. A. (2023). Particulate matter pollution in selected areas of Nigeria: Spatial analysis and risk assessment. Case Studies in Chemical and Environmental Engineering, 7, 100288. https://doi.org/10.1016/j.cscee.2022.100288
[21] Lala, S. (2024). Designing efficient clinical randomized controlled trials with limited data using artificial intelligence [Doctoral dissertation, Princeton University]. Princeton University Press.
[22] Landrigan, P. J., Fuller, R., Acosta, N. J. R., Adeyi, O., Arnold, R., Basu, N., Baldé, A. B., Bertollini, R., Bose-O’Reilly, S., Boufford, J. I., ... & Zhong, M. (2017). The Lancet Commission on pollution and health. The Lancet, 391(10119), 462–512. https://doi.org/10.1016/S0140-6736(17)32345-0
[23] Lee, S. C., Chiu, M. Y., & Ho, K. F. (2019). Evaluation of particulate matter (PM2.5, PM10, and PM2.5/PM10 ratio) in Hong Kong: A 17-year monitoring study. Environmental Pollution, 247, 874–883. https://doi.org/10.1016/j.envpol.2019.01.105
[24] Madawala, C. K., Molina, C., Kim, D., Gamage, D. K., Sun, M., Leibensperger, R. J., ... & Tivanski, A. V. (2024). Effects of wind speed on size-dependent morphology and composition of sea spray aerosols. ACS Earth and Space Chemistry, 8(8), 1609–1622. https://doi.org/10.1021/acsearthspacechem.4c00023
[25] Mao, J., Li, L., Li, J., Sulaymon, I. D., Wang, K., Zhu, J., Chen, G., Ye, F., Zhang, N., Qin, Y., Qin, M., & Hu, J. (2022). Evaluation of long-term modeling fine particulate matter and ozone in China during 2013–2019. Frontiers in Environmental Science, 10, 872249. https://doi.org/10.3389/fenvs.2022.872249
[26] Masih, J., Dyavarchetty, S., Nair, A., Taneja, A., & Singhvi, R. (2019). Concentration and sources of fine particulate associated polycyclic aromatic hydrocarbons at two locations in the western coast of India. Environmental Technology & Innovation, 13, 179–188. https://doi.org/10.1016/j.eti.2018.10.012
[27] Mendell, M. J., Mirer, A. G., Cheung, K., Tong, M., & Douwes, J. (2011). Respiratory and allergic health effects of dampness, mold, and dampness-related agents: A review of the epidemiologic evidence. Environmental Health Perspectives, 119(6), 748–756. https://doi.org/10.1289/ehp.1002410
[28] Mukwevho, N., Mabowa, M. H., Ntsasa, N., Mkhohlakali, A., Chimuka, L., Tshilongo, J., & Letsoalo, M. R. (2025). Seasonal pollution levels and heavy metal contamination in the Jukskei River, South Africa. Applied Sciences, 15(6), 3117. https://doi.org/10.3390/app15063117
[29] Nimo, J., Borketey, M. A., Appoh, E. K.-E., Morrison, A. K., Ibrahim-Anyass, Y., Tawiah, A. O., Arku, R. E., Amoah, S., Tetteh, E. N., Brown, T., Presto, A. A., Subramanian, R., Westervelt, D. M., Giordano, M. R., & Hughes, A. F. (2025). Low-cost PM2.5 sensor performance characteristics against meteorological influence in Sub-Saharan Africa: Evidence from the Air Sensor Evaluation and Training Facility for the West Africa Project. Environmental Science & Technology, 59(13), 6623–6635. https://doi.org/10.1021/acs.est.4c09752
[30] Nkansah, F. K., Belford, E. J. D., Hogarh, J. N., & Anim, A. K. (2025). Assessment of ambient air quality and health risks from vehicular emissions in urban Ghana: A case study of Winneba. Journal of Air Pollution and Health, 10(1), 19–36. https://doi.org/10.18502/japh.v10i1.18759
[31] Okoro, A. P., Orhuebor, E. N., & Ngobiri, N. C. (2025). Impact of vehicular emissions on air quality parameters in major motor parks in Abuja, Nigeria. Scientia Africana, 24(2), 129–138. https://dx.doi.org/10.4314/sa.v24i2.14.
[32] Owoade, O. K., Olise, F. S., Ogundele, L. T., Fawole, O. G., & Olaniyi, H. B. (2012). Correlation between particulate matter concentrations and meteorological parameters at a site in Ile-Ife, Nigeria. Ife Journal of Science, 14(1), 83–93.
[33] Paital, B. (2020). Nurture to nature via COVID-19, a self-regenerating environmental strategy of environment in global context. Science of the Total Environment, 729, 139088. https://doi.org/10.1016/j.scitotenv.2020.139088
[34] Park, J., Bui, H. T., & Lee, E. (2025). Accumulation of particulate matter, heavy metals, and air pollution tolerance index of 10 species of urban forest plants. Water, Air, & Soil Pollution, 236, 234. https://doi.org/10.1007/s11270-025-07875-6
[35] Saetae, S., Abulude, F. O., Arasaki, K., Ndamitso, M. M., Akinnusotu, A., Oluwagbayide, S. D., Matsumi, Y., Kawamoto, K., & Nakayama, T. (2025). Seasonal and diurnal variations of indoor PM2.5 in six households in Akure, Nigeria. Atmosphere, 16(5), 603. https://doi.org/10.3390/atmos16050603
[36] Sakhri, H. (2025). Assessing the influence of PM2.5 and PM10 on subjective thermal comfort in university classrooms. Journal of Air Pollution and Health, 10(2), 155–168. https://doi.org/10.18502/japh.v10i2.19075
[37] Shen, Y., Lee, P., Wang, C. C., Teng, M., Huang, J., & Fan, H. (2024). Exploring the cellular impact of size-segregated cigarette aerosols: Insights into indoor particulate matter toxicity and potential therapeutic interventions. Chemical Research in Toxicology,
37(7), 1171–1186. https://doi.org/10.1021/acs.chemrestox.4c00114.
[38] Shetaya, W. H., El-Mekawy, A., & Hassan, S. (2023). Tempo-spatial variability and health risks of PM2.5 and associated metalloids in Greater Cairo, Egypt. Exposure and Health, 16, 973–988. https://doi.org/10.1007/s12403-023-00603-7
[39] Shukla, A. K., Tripathi, S. N., Talukdar, S., Murari, V., Gaddamidi, S., Manousakas, M.-I., Lalchandani, V., Dixit, K., Ruge, V. M., Khare, P., Kumar, M., Singh, V., Rastogi, N., Tiwari, S., Srivastava, A. K., Ganguly, D., Daellenbach, K. R., & Prévôt, A. S. H. (2025). Measurement report: Sources and meteorology influencing highly time-resolved PM2.5 trace elements at three urban sites in the extremely polluted Indo-Gangetic Plain in India. Atmospheric Chemistry and Physics, 25(7), 3765–3784. https://doi.org/10.5194/acp-25-3765-2025
[40] Siudek, P. (2020). Seasonal variability of trace elements in fine particulate matter (PM2.5) in a coastal city of northern Poland: Profile analysis and source identification. Environmental Science: Processes & Impacts, 22(10), 2230–2243. https://doi.org/10.1039/d0em00031k
[41] Tripathi, S. N., Yadav, N., & Sharma, K. (2024). Air pollution from biomass burning in India. Environmental Research Letters, 19(7), 073007. https://doi.org/10.1088/1748-9326/ad4a90
[42] United States Environmental Protection Agency (US EPA). (2020). National air toxics assessment 2020. U.S. Environmental Protection Agency. https://www.epa.gov/nata
[43] Wambebe, N. M., & Duan, X. (2020). Air quality levels and health risk assessment of particulate matter in Abuja Municipal Area, Nigeria. Atmosphere, 11(8), 817. https://doi.org/10.3390/atmos11080817
[44] World Health Organization. (2012). Global air quality guidelines: Particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. WHO. https://apps.who.int/iris/handle/10665/345329
[45] World Health Organization. (2021). Global air quality guidelines: Particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulphur dioxide and carbon monoxide. WHO. https://www.who.int/publications/i/item/9789240034228
[46] Yadav, A., Behera, S. N., Nagar, P. K., & Sharma, M. (2020). Spatio-seasonal concentrations, source apportionment and assessment of associated human health risks of PM2.5-bound polycyclic aromatic hydrocarbons in Delhi, India. Aerosol and Air Quality Research, 20(12), 2805–2825. https://doi.org/10.4209/aaqr.2020.04.0182
[47] Yang, D., Li, M., Geng, X., & Feng, Z. (2024). Sources and specified health risks of 12 PM2.5-bound metals in a typical air-polluted city in Northern China during the 13th Five-Year Plan. Toxics, 12(8), 581. https://doi.org/10.3390/toxics12080581
[48] Yang, Y., Chang, C. Y., Sun, C. W., Chao, M. R., & Lai, C. C. (2019). Pesticide exposure and lung cancer risk: A case–control study in non-smoking men. Scientific Reports, 9, 1–8. https://doi.org/10.1038/s41598-019-40377-1
[49] Zhang, Y., Mo, J., & Li, J. (2020). Temporal variations of PM2.5, PM10, and PM2.5/PM10 ratios in the Yangtze River Delta and their relationship with synoptic meteorology and boundary-layer structures. Atmospheric Research, 236, 104837. https://doi.org/10.1016/j.atmosres.2019.104837.